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Abstract
We study a non-Abelian gauge theory with a pseudo scalar coupling
φ Tr(F ∗

µνF
µν) in the case where a constant chromo-electric, or chromo-

magnetic, strength expectation value is present. We compute the interaction
potential within the framework of gauge-invariant, path-dependent, variables
formalism. While in the case of a constant chromo-electric field strength
expectation value the static potential remains Coulombic, in the case of a
constant chromo-magnetic field strength the potential energy is the sum of a
Coulombic and a linear potential, leading to the confinement of static charges.

PACS numbers: 12.38.Aw, 14.80.Mz

1. Introduction

It is presently widely accepted that quantitative understanding of confinement of quarks and
gluons remains as the major challenge in QCD. In this connection, a linearly increasing
quark–antiquark pair static potential provides the simplest criterion for confinement, although
unfortunately there is up to now no known way to analytically derive the confining potential
from first principles. In this context, it may be recalled that phenomenological models
have been of considerable importance in order to provide strong insight into the physics of
confinement, and can be considered as effective theories of QCD. One of these, which is
the dual superconductivity picture of QCD vacuum [1], has probably enjoyed the greatest
popularity. The key ingredient in this model is the condensation of topological defects
originated from quantum fluctuations (monopoles). As a consequence, the colour electric flux
linking quarks is squeezed into ‘strings’, and the nonvanishing string tension represents the
proportionality constant in the linear, quark confining, potential. We further note that recently
an interesting approach to this problem has been proposed [2], which includes the contribution
of all topologically nontrivial sectors of a gauge theory. Mention should be made, at this point,
to lattice calculations which clearly show the formation of tubes of gluonic fields connecting

0305-4470/06/206021+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 6021

http://dx.doi.org/10.1088/0305-4470/39/20/025
mailto:patricio.gaete@usm.cl
mailto:spallucci@ts.infn.it
http://stacks.iop.org/JPhysA/39/6021


6022 P Gaete and E Spallucci

coloured charges [3]. In agreement with lattice results, loop–loop correlations have been
recently computed analytically in extended stochastic vacuum models [4].

With these ideas in mind, in a previous paper [5], we have studied a simple effective theory
where confining potentials are obtained in the presence of nontrivial constant expectation
values for the gauge field strength Fµν coupled to a scalar (axion) field φ, via the interaction
term

LI = g

8
φεµναβFµνFαβ. (1)

In particular, we have observed that in the case of a constant electric field strength expectation
value the static potential remains Coulombic, while in the case of a constant magnetic field
strength expectation value the potential energy is the sum of a Yukawa and a linear potential,
leading to the confinement of static charges. More interestingly, we remark that the magnetic
character of the field strength expectation value needed to obtain confinement is in agreement
with the current chromo-magnetic picture of the QCD vacuum [6]. Another feature of this
model is that it restores the rotational symmetry (in the potential), despite that the external
fields break this symmetry. We further observe that similar results have been obtained in the
context of the dual Ginzburg–Landau theory [7], as well as, for a theory of antisymmetric
tensor fields that results from the condensation of topological defects as a consequence of
the Julia–Toulouse mechanism [8]. Accordingly, from a phenomenological point of view,
we have established an equivalence between different models describing the same physical
phenomena. This allows us to obtain more information about a theory than is possible by
considering a single description.

By following this line of reasoning, it is natural to extend the previous analysis to the case
where a scalar field φ is coupled to a non-Abelian gauge field, that is,

LI = β

8
φ εµναβ Tr Fµν Fαβ, (2)

where the trace is taken over colour indices. While an Abelian model with interaction of
the type (1) is no more than a useful ‘laboratory’, it may be worth to recall that in QCD
coupling of the form (2) is instrumental to build up the Peccei–Quinn mechanism [12] and
solve the strong CP problem [9–11]. In this case, the scalar field describes the axion, i.e. the
Nambu–Goldstone boson of a new broken U(1) symmetry of the quark and Higgs sector.

The purpose of this work is to extend the Abelian calculations in [5] to the non-Abelian case
and find the corresponding static potential. Our calculations are done within the framework
of the gauge invariant/path-dependent variables formalism, providing an effective tool for
a better understanding of effective non-Abelian theories. One important advantage of this
approach is that it provides a physically-based alternative to the usual Wilson loop approach,
where in the latter the usual qualitative picture of confinement in terms of an electric flux tube
linking quarks emerges naturally. As we shall see, in the case of a constant chromo-electric
field strength expectation value the static potential remains Coulombic. On the other hand, in
the case of a constant chromo-magnetic field strength expectation value the potential energy is
the sum of a Coulombic and a linear potential, that is, the confinement between static charges
is obtained. As a result, the new coupling displays a marked departure of a qualitative nature
from the results of [5] at large distances.

It is interesting to observe that the dual superconductivity picture of QCD, compared with
the model proposed here, involves the condensation of topological defects originated from
quantum fluctuations. Thus one is led to the conclusion that the phenomenological model
proposed here incorporates automatically the contribution of the condensate of topological
defects to the vacuum of the model or, alternatively, the nontrivial topological sectors as in [2].
Another way of obtaining the above conclusion is by invoking the bosonization technique
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in (1 + 1) dimensions. Indeed, it is a well-known fact that, for instance, in the Schwinger
model [13], the bosonized version (effective theory) contains quantum corrections at the
classical level. In the same way, we can interpret the model proposed here as an effective theory
which contains quantum effects at the classical level. Thus, one obtains a similarity between
the tree level mechanism that leads to confinement here and the nonperturbative mechanism
which gives confinement in QCD. Accordingly, the above interrelations are interesting from
the point of view of providing unifications among diverse models as well as exploiting the
equivalence in explicit calculations, as we are going to show.

2. Interaction energy

As we discussed in the introduction, our immediate objective is to calculate explicitly the
interaction energy between static pointlike sources, for a model containing the term (2), along
the lines of [5, 15]. To this end we will compute the expectation value 〈H 〉� of the Hamiltonian
operator H in the physical state |�〉 describing the sources. The non-Abelian gauge theory
we are considering is defined by the following generating functional in four-dimensional
spacetime:

Z =
∫

DφDA exp

{
−i

∫
d4xL

}
, (3)

with

L = −1

4
Tr Fµν Fµν +

β

8
φ εµνρσ Tr Fµν Fρσ +

1

2
∂µ φ ∂µ φ +

m2
A

2
φ2, (4)

where mA is the mass for the axion field φ. Here, Aµ (x) = Aa
µ (x) Ta , where Ta

is a Hermitian representation of the semi-simple and compact gauge group, and Fa
µν =

∂µAa
ν − ∂νA

a
µ + gf a

bcA
b
µAc

ν , with f a
bc the structure constants of the group. As in [5] we restrict

ourselves to static scalar fields; a consequence of this is that one may replace ∂2φ = −∇2φ.
It also implies that, after performing the integration over φ in Z , the effective Lagrangian
density is given by

L = −1

4
Tr Fµν Fµν +

β2

128
εµνρσ Tr Fµν Fρσ

1

∇2 − m2
A

εαβγ δTr Fαβ Fγ δ. (5)

Furthermore, as was explained in [14], expression (5) can be rewritten as

L = −1

4
Tr fµν fµν +

β2

16
εµναβTr〈Fµν〉 fαβ

1

∇2 − m2
A

ερσγ δTr 〈Fρσ 〉 fγ δ. (6)

where
〈
Fa

µν

〉
represents the constant classical background (which is a solution of the classical

equations of motion). Here, f a
µν describes a small fluctuation around the background; we also

mention that the above Lagrangian arose after using εµναβTr 〈Fµν 〉 〈Fαβ〉 = 0 (which holds
for a pure chromo-electric or a pure chromo-magnetic background).

By introducing the notation εµναβ〈Fµν〉 ≡ vαβ and ερσγ δ〈Fρσ 〉 ≡ vγ δ , expression (6) then
becomes

L = −1

4
Tr fµνfµν +

β2

16
Tr vαβfαβ

1

∇2 − m2
A

Tr vγ δfγ δ. (7)

At this stage we note that (7) has the same form as the corresponding Abelian effective
Lagrangian density. This common feature is our main motivation to study the effect of the
non-Abelian coupling on the interaction energy.
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2.1. Chromo-magnetic case

We now proceed to obtain the interaction energy in the voi �= 0 and vij = 0 case (referred
to as the chromo-magnetic one in what follows), by computing the expectation value of the
Hamiltonian in the physical state |�〉. The Lagrangian (7) then becomes

L = −1

4
Tr fµνfµν +

β2

4
Tr v0if0i

1

∇2 − m2
A

Tr v0kf0k − Tr A0J0, (8)

where J0 is an external current, µ, ν = 0, 1, 2, 3 and i, k = 1, 2, 3. Once this is done, the
canonical quantization in the manner of Dirac yields the following results. The canonical
momenta are

�a0 = 0, (9)

�a
i = Dab

ij E
j

b , (10)

Ea
i ≡ f a

i0, (11)

Dab
ij ≡

(
δabδij +

β2

2
va

i0
1

∇2 − m2
A

vb
j0

)
. (12)

Since D is nonsingular, there exists the inverse D−1 and from equation (10) we obtain

Ea
i = 1

det D

{
δabδ

j

i det D − β2

2
va

i0
1

∇2 − m2
A

vb
j0

}
�bj . (13)

The corresponding canonical Hamiltonian is thus

HC =
∫

d3x Tr

[
Πi (DA0)i +

1

2
ΠiΠi +

1

2
BiBi − β2

4
(viΠi )

1

∇2 − M2
(viΠi ) + (A0J0)

]
,

(14)

where M2 ≡ m2
A − β2

8 vivi and Bi is the chromo-magnetic field. By applying the Dirac
quantization procedure for constrained systems, and removing non-physical variables by
imposing an appropriate gauge condition3, we can compute the interaction energy between
pointlike sources in the model under consideration. A fermion is localized at 0 and an
antifermion at y. From our above discussion, we see that 〈H 〉� reads

〈H 〉� = 〈�|
∫

d3x Tr

[
1

2
Tr ΠiΠi − β2

4
Tr viΠi

1

∇2 − M2
Tr viΠi

]
|�〉 . (15)

Now we recall that the physical state can be written as [15]

|�〉 = ψ (y) P exp

(
ig

∫ y

0
dziAi (z)

)
ψ (0) |0〉 . (16)

The line integral is along a spacelike path on a fixed time slice, P is the path-ordering
prescription and |0〉 is the physical vacuum state. As in [15], we again restrict our attention to
the weak coupling limit. From this and the foregoing Hamiltonian discussion, we then get

〈H 〉� = 〈H 〉0 + V1 + V2, (17)

where 〈H 〉0 = 〈0|H |0〉, and the V1 and V2 terms are given by

V1 = 1

2
〈�|

∫
d3x Tr ΠiΠi |�〉 , (18)

3 In our gauge-invariant, path-dependent formalism, the gauge fixing procedure is equivalent to the choice of a
particular path [15], e.g. a spacelike, straight, path xi = ξ i + λ(x − ξ)i , on a fixed time slice.
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and

V2 = −β2

4
〈�|

∫
d3x Tr viΠi

1

∇2 − M2
Tr viΠi |�〉. (19)

One immediately sees that the V1 term is identical to the energy for the Yang–Mills
theory. Notwithstanding, in order to put our discussion into context it is useful to summarize
the relevant aspects of the analysis described previously [15]. Thus, we then get an Abelian
part (proportional to CF ) and a non-Abelian part (proportional to the combination CF CA). As
we have noted before, the Abelian part takes the form

V (g2) = 1

2
g2 Tr(T aTa)

∫ y

0
dzi

∫ y

0
dzi δ(z − z′), (20)

remembering that the integrals over zi and z′
i are zero except on the contour of integration.

Writing the group factor Tr T aTa = CF , expression (20) is given by

V (g2)(L) = −g2CF

4πL
, (21)

where |y| ≡ L. Next, the non-Abelian part may be written as

V (g4) = Tr
∫

d3x〈0|IiIi |0〉, (22)

where

I ai = g2f a
bcT

b

∫ y

0
dzk

∫ 1

0
dλ Ac

k(z)z
iδ(x − λz). (23)

It should be noted that, by using spherical coordinates, expression (23) reduces to

I ai = g2f a
bcT

b zi

|z|
1

|x|2
∫ y

0
dzkAc

k(z)
∑
lm

Y ∗
lm(θ ′, ϕ′)Ylm(θ, ϕ). (24)

Putting this back into equation (22), we obtain

V g4
(L) = −CACF

(
g4

2L

) ∫ y

0
dzi

∫ y

0
dz′jDij (z, z

′). (25)

Here Dij (z, z
′) stands for the propagator, which is diagonal in colour and taken in an arbitrary

gauge. Following our earlier discussion, we choose the Feynman gauge. As a consequence,
expression (25) then becomes

V g4
(L) = −g4 1

4π2
CACF

1

L
log(�L), (26)

where � is a cutoff. Then, the V1 term takes the form

V1 = −g2CF

1

4πL

(
1 +

g2

π
CA log(�L)

)
. (27)

It is important to realize that our calculation was based only on the Hamiltonian and on
the geometrical requirement that the fermion–antifermion state be invariant under gauge
transformations. From (27) we see that the term of order g2 is just the Coulomb energy due
to the colour charges of the quarks. The correction term of order g4 represents an increase of
the energy due to the vacuum fluctuations of the gauge fields.

The task is now to evaluate the V2 term, which is given by

V2 = −β2

4
〈�|

∫
d3x Tr viΠi

1

∇2 − M2
Tr vjΠj |�〉. (28)
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Once again, from our above Hamiltonian structure we have an Abelian contribution and a
non-Abelian contribution; in other words,

V
(Ab.)

2 = −β2

4
g2Tr vivi

∫
d3x

∫ y

0
dz′iδ(x − z′)

1

∇2
x − M2

∫ y

0
dziδ(x − z), (29)

and

V
(Non-Abelian)

2 = β2g4

4
Tr(T bT d)fpbcf

c
qdv

piv
q

i

∫ y

0
dzl

∫ y

0
dz′kDlk(z, z′)

×
∫ z′

0
duj

∫ z

0
dvjG(u, v), (30)

as before, and Dlk(z, z
′) represents the propagator. Here, G is the Green function

G(u, v) = 1

4π

e−M|z′−z|

|z′ − z| . (31)

This Green function is, in momentum space,

1

4π

e−M|u−v|

|u − v| =
∫

d3k

(2π)3

eik·(u−v)

k2 + M2
. (32)

By means of equation (32) and remembering that the integrals over zi and z′i are zero except
on the contour of integration, the term (29) reduces to the linearly increasing potential [5], that
is,

V
(Ab.)

2 = β2g2

16π
Tr(vivi )L log

(
1 +

�2

M2

)
, (33)

We now proceed to calculate the V
(Non-Abelian)

2 term. As before, we will use the Green
function (32) in momentum space to handle the integral in equation (30). Following our earlier
procedure [5], equation (30) is further rewritten as

V
(Non-Abelian)

2 = β2g4

8
Tr(T bT d)fpbcf

c
qdv

piv
q

i log

(
1 +

�2

M2

) ∫ y

0
dzl

∫ y

0
dz′k|z|Dlk(z, z′).

(34)

Now, we move on to compute the integral (34). As in the previous calculation, we choose
Dlk(z, z′) in the Feynman gauge. Thus the V

(Non-Abelian)
2 term is

V
(Non-Abelian)

2 = β2g4

8
Tr(T bT d)f pbcf c

qdv
piv

q

i L log

(
1 +

�2

M2

)
, (35)

after subtracting the self-energy terms.
From (33) and (35) we then get

V2 = β2g2

8

[
1

2π
Tr(vivi ) + g2Tr(T bT d)fpbcf

c
qdv

piv
q

i

]
L log

(
1 +

�2

M2

)
. (36)

By putting together equations (27) and (36), we obtain for the total interquark potential

V = −g2CF

4πL

[
1 +

g2

π
CA log(�L)

]

+
β2g2

8

[
1

2π
Tr(vivi ) + g2 Tr(T bT d)fpbcf

c
qdv

piv
q

i

]
L log

(
1 +

�2

M2

)
. (37)

It must be observed that the rotational symmetry is restored in the resulting form of the
potential, although the external fields break the isotropy of the problem in a manifest way.
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It should be remarked that this feature is also shared by the corresponding Abelian interaction
energy [5]. As we have noted before this improves the situation as compared to the ‘spaghetti
vacuum’ model [6] where rotational symmetry seems to be very difficult to restore.

Now we recall the calculation reported in [2] by taking into account topological nontrivial
sectors in U(1) gauge theory

V (L) = − e2

4π

1

L
+ σL. (38)

We immediately see that the result (37) is exactly the one obtained in [2]. It is interesting to
note that even if (6) is an effective model, extending the Abelian one discussed in [5], it is able
to reproduce the correct form of the Cornell potential (38). As such it deserves some further
investigation.

2.2. Chromo-electric case

Now we focus on the case v0i = 0 and vij �= 0 (referred to as the chromo-electric one in what
follows). The corresponding Lagrangian density reads

L = −1

4
Tr fµνfµν +

β2

16
Tr vij fij

1

∇2 − m2
A

Tr vklfkl − Tr A0J0, (39)

where µ, ν = 0, 1, 2, 3 and i, j, k, l = 1, 2, 3. Here again, the quantization is carried out
using Dirac’s procedure. We can thus write the canonical momenta �aµ = −f a0µ, which
results in the usual primary constraint �a0 = 0 and �ai = f ai0. Defining the electric and
magnetic fields by Eai = f i0 and Bak = − 1

2εkij f aij , respectively, the canonical Hamiltonian
is thus

HC =
∫

d3x

[
1

2
Tr EiEi +

1

2
Tr BiBi − β2

16
εijmεkln Tr vij Bm 1

∇2 − m2
A

Tr vkl Bn

− Tr A0(∂iΠi − J0)

]
. (40)

It is straightforward to see that the constrained structure for the gauge field is identical
to the usual Yang–Mills theory. However, in order to put the discussion into the context
of this paper, it is convenient to mention the relevant aspects of the analysis described
previously [15]. Therefore, we pass now to the calculation of the interaction energy.
As done above, our objective is now to calculate the expectation value of the Hamiltonian in

the physical state |�〉. In other words,

〈H 〉� = 〈�|1

2

∫
d3x Tr EiEi |�〉. (41)

Taking into account the above Hamiltonian structure, the interaction takes the form

〈H 〉� = 〈H 〉0 + V1, (42)

where 〈H 〉0 = 〈0|H |0〉. Accordingly, the potential reads

V1 = −g2CF

4πL

(
1 +

g2

π
CA log (�L)

)
. (43)
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3. Final remarks

In summary, we have considered the confinement versus screening issue for a non-Abelian
theory with a coupling εµναβF a

µνF
a
αβ , in the case when there are nontrivial constant expectation

values for the gauge field strength Fa
µν . The constant gauge field configuration is a solution of

the classical equations of motion.
It was shown that in the case when

〈
Fa

µν

〉
is chromo-electric-like no unexpected features

are found. Indeed, the resulting static potential remains Coulombic. More interestingly, it was
shown that when

〈
Fa

µν

〉
is chromo-magnetic-like the potential between static charges displays

a Coulomb piece plus a linear confining piece. An analogous situation in the Abelian case
may be recalled [5]. Also, a common feature of these models (Abelian and non-Abelian) is
that the rotational symmetry is restored in the resulting interaction energy.

We recall that the effective action (7) is the expansion of (6) up to second order in the
fluctuation field fµν ; thus one could wonder about the effect of including higher order terms.
Even if an explicit calculation is well beyond the purpose of this paper, some general comments
can be given. We know that higher order quantum effects renormalize coupling constants by
making them scale dependent. It is easy to see that the logarithmic correction to the Coulombic
term in (37) is nothing but the first-order expansion of the effective, running, coupling constant

g2
eff(�L) = g2π

1 − g2CA

π
log(�L)

. (44)

g2
eff exhibits the expected asymptotically free behaviour at short distance characterizing the

non-Abelian character of the strong interaction. This result marks a clear difference from the
Abelian case, where the electric charge increases at short distance. Similar renormalization
effects are expected for the string tension σ , as well. However, the log

(
1 + �2

M2

)
factor in

the second term in (37) is L-independent. We are confident that higher order corrections will
preserve this feature leading to a still confining static potential of the form

V (L) = −g2
eff(�L)CF

4L
+ σeff(�

2/M2)L. (45)

An explicit check of (45) will be addressed in a future work.
We conclude by noting that our result agrees with the monopole plasma mechanism [1, 2].

However, although both approaches lead to confinement, the above analysis reveals that the
mechanism of obtaining a linear potential is quite different. As already mentioned, in this work
we have exploited the similarity between the tree level mechanism that leads to confinement
here and the nonperturbative mechanism (caused by monopoles) which gives confinement
in QCD.
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